土木工程与力学学院
江苏大学门户 ENGLISh
 
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
 
  师资队伍
研究生导师
博士生导师
硕士生导师
学院教师
兼职教授
人才招聘
硕士生导师 首页 > 师资队伍 > 研究生导师 > 硕士生导师 > 力学 > 正文
 
刘金兴

姓  名

刘金兴

出生年月

19796

政治面貌

群众

最高学位

博士

职  称

教授

任职年月

201311

职  务

任职年月

所在学科

力学

博导/硕导

博导、硕导

学习与工作经历

学习经历:

20029 – 20077

作为硕博连读生就读于中国科学院力学研究所非线性力学国家重点实验室。

19989 – 20027         

作为本科生就读于中国科学技术大学力学与机械工程系。

工作经历:

201310至今                         

职位:教授,博导

单位:江苏大学,土木工程与力学学院,力学与工程科学系。

20109 – 20139                

职位:博士后

单位:计算固体力学实验室,物理科学部,阿卜杜拉国王科技大学,沙特阿拉伯。

20098 – 20107

职位:博士后

单位:机械工程系,加拿大纽布伦斯维克大学 。

200811 – 20097              

职位:博士后

单位:机械工程系,加拿大曼尼托巴大学 。

200710 – 200810            

职位:研究员

单位:土木环境系,新加坡南洋理工大学 。

学术与社会任职

中国力学学会会员,江苏省力学学会理事,江苏省固体力学专委会委员,江苏省计算力学专委会委员

主讲课程

本科生:弹性力学,工程力学,专题讲座与文献调研

研究生:专业力学基础,computational mechanics(留学生)

博士生:专业力学基础,advanced computational mechanics(留学生)

研究领域

力学超材料理论建模与优化设计;

非均质准脆性材料的损伤断裂机理研究;

微/纳米尺寸效应;

广义连续介质理论;

金属韧性失效。

基于人工智能AI研发理论与材料

科研项目

结题项目:

国家自然科学基金项目,基于应变梯度理论的微尺度循环塑性本构模型研究,20171-202012

国家自然科学基金项目,基于微极理论的弯曲主导型点阵超材料尺寸效应和屈曲行为研究,20201-202312

主要论著

论文

1.         Peng C, Liu J,   Soh AK. Effective dynamic properties of multi-segment beam lattices: a   dynamic stiffness formulation. Acta Mechanica. 2024;In   Press.

2.         Zhao Z, Liu J.   Probing plastic mechanisms in gradient dual-phase high-entropy alloys under   nanoindentation. Journal of Alloys and Compounds. 2023;946:169424.

3.         Wang Y, Liu J.   On the yield surface of a typical bending-dominant periodic lattice   metamaterial. Journal of Theoretical and Applied Mechanics. 2023;61(1):175-187.

4.         Wang B, Liu J.   Padé-Based Strain Gradient Modeling of Bandgaps in Two-Dimensional Acoustic   Lattice Metamaterials. International Journal of Applied Mechanics. 2023;15(02):2350006.

5.         Li X, Liu J,   Soh AK. Prestress-mediated damage strength of lattice metamaterials and   its optimization. International Journal of Fracture. 2023;   In Press.

6.         Chi Z, Liu J,   Soh AK. On complete and micropolar-based incomplete strain gradient   theories for periodic lattice structures. Applied Mathematics and   Mechanics. 2023;44(10):1651-1674.

7.         Chi Z, Liu J,   Kah Soh A. Overlapping-Field Modeling (OFM) of periodic lattice   metamaterials. International Journal of Solids and Structures. 2023;269:112201.

8.         Zhao Z, Liu J,   Soh AK, Tang C. On the snap-through time of a nanoscale elastic strip. Acta   Mechanica Sinica. 2022;38:121219.

9.         Zhao Z, Liu J,   Siddiq A. Plastic Softening Induced by High-Frequency Vibrations   Accompanying Uniaxial Tension in Aluminum. Nanomaterials. 2022;12(7):01239.

10.       Zhao Z, Liu J. On   cyclic plasticity of nanostructured dual-phase CoCrFeNiAl high-entropy alloy:   An atomistic study. Journal of Applied Physics. 2022;132:164307.

11.       Wang B, Liu J, Soh AK,   Liang N. Exact strain gradient modelling of prestressed nonlocal diatomic   lattice metamaterials. Mechanics of Advanced Materials and Structures.   2022;30(13):1-17.

12.       Wang B, Liu J, Soh AK,   Liang N. On band gaps of nonlocal acoustic lattice metamaterials: a   robust strain gradient model. Applied Mathematics and Mechanics   (English Edition). 2022;43(1):1-20.

13.       Li X, Wang B, Liu J.   Constructing continuum models of acoustic metamaterials via the symbiotic   organisms search (SOS) optimization. AIP Advances. 2022;12(11):115320.

14.       Hou M, Liu J, Soh AK.   Modeling lattice metamaterials with deformable joints as an elastic   micropolar continuum. AIP Advances. 2022;12(6):065116.

15.       Chi Z, Liu J, Soh AK.   Micropolar modeling of a typical bending-dominant lattice comprising zigzag   beams. Mechanics of Materials. 2021;160:103922.

16.       Wang Y, Chi Z, Liu J.   On buckling behaviors of a typical bending-dominated periodic lattice. Composite   Structures. 2020;258:113204.

17.       Ma X, Liu J, Wang J, Pan H.   Modeling of dynamic growth of a micro-scaled void based on strain gradient   elasto-plasticity. Journal of Theoretical and Applied Mechanics. 2020;58(4):927-941.

18.       Zhao Z, Liu J, Soh AK,   Tang C. Temperature-mediated fabrication, stress-induced crystallization   and transformation: atomistic simulations of additively manufactured   amorphous Cu pillars. Modelling and Simulation in Materials Science and   Engineering. 2019;27(7):075012.

19.       Zhao F, Pan H, Zhang F,   Liu J. A viscoplastic model for void growth under dynamic loading   conditions. AIP Advances. 2019;9(12):125119.

20.       Zhao F, Ma X, Pan H, Liu J.   Modeling of dynamic elasto-plastic growth of a nano-void with surface energy,   inertia and thermal softening effects. AIP Advances. 2019;9(10):105313.

21.       Wang W, Liu J, Soh AK.   Crystal plasticity modeling of strain rate and temperature sensitivities in   magnesium. Acta Mechanica. 2019;230(6):2071-2086.

22.       Ma X, Liu J. Influence   of pre-tension on torsion of microscale Cu wires: a study via strain gradient   theory. Journal of Theoretical and Applied Mechanics. 2019;57(4):1055-1065.

23.       Liu J, Liang N, Soh AK.   Modeling of progressive failures in quasi-brittle media based on a temporal   stress-redistribution mechanism. Applied Mathematical Modelling. 2019;65:464-488.

24.       Liu J. Simulating   time-dependent quasi-brittle failures based on a multilinear releasing   mechanism of viscous force (VF) fields. Engineering Fracture Mechanics.   2019;216:106490.

25.       Zhao Z, Liu J, Soh AK.   On the Da Vinci size effect in tensile strengths of nanowires: A molecular   dynamics study. AIP Advances. 2018;8(1):015315.

26.       Liu J. Simulating   quasi-brittle failures including damage-induced softening based on the   mechanism of stress redistribution. Applied Mathematical Modelling.   2018;55:685-697.

27.       王梦阳, 刘金兴. 泡沫金属弹性变形尺度效应的理论与数值研究. 工程力学. 2017;34(10):35-43.

28.       Liu J, Wang W, Zhao Z, Soh   AK. On elastic and plastic length scales in strain gradient plasticity. Structural   Engineering and Mechanics. 2017;61(2):275-282.

29.       Liu J, Soh AK.   Gradient-type modeling of the effects of plastic recovery and surface   passivation in thin films. Modelling and Simulation in Materials   Science and Engineering. 2016;24(6):065001.

30.       Liu J, Soh AK. Strain   gradient elasto-plasticity with a new Taylor-based yield function. Acta   Mechanica. 2016;227(10):3031-3048.

31.       Xu J, Liu J, Rajendran S.   A hybrid ‘FE-Meshfree’ QUAD4 element with nonlocal features. Computational   Mechanics. 2015;56(2):317-329.

32.       Liu JX. Analysis of   surface effects on the deformation of a nanovoid in an elasto-plastic   material. Applied Mathematical Modelling. 2015;39(17):5091-5104.

33.       Mora A, Liu JX, El Sayed T.   Constitutive modeling of void-growth-based tensile ductile failures with   stress triaxiality effects. Applied Mathematical Modelling. 2014;38(13):3212-3221.

34.       Liu JX, Demiral M, Sayed   TE. Taylor-plasticity-based analysis of length scale effects in void   growth. Modelling and Simulation in Materials Science and Engineering.   2014;22(7):075005.

35.       Liu J, Soh AK.   Bridging strain gradient elasticity and plasticity toward general loading   histories. Mechanics of Materials. 2014;78:11-21.

36.       Liu JX, Sayed TE. A   variational constitutive model for the distribution and interactions of   multi-sized voids. International Journal of Damage Mechanics. 2013;23(1):124-152.

37.       Liu JX, Sayed TE. A   quasi-static algorithm that includes effects of characteristic time scales   for simulating failures in brittle materials. International Journal of   Damage Mechanics. 2013;23(1):83-103.

38.       Liu J, El Sayed T. On   the Load–Unload (L–U) and Force–Release (F–R) Algorithms for Simulating   Brittle Fracture Processes via Lattice Models. International Journal of   Damage Mechanics. 2012;21(7):960-988.

39.       Liu JX, Chen ZT, Wang H,   Li KC. Elasto-plastic analysis of influences of bond deformability on the   mechanical behavior of fiber networks. Theoretical and Applied Fracture   Mechanics. 2011;55(2):131-139.

40.       Liu J, Chen Z, Li KC.   A 2-D lattice model for simulating the failure of paper. Theoretical   and Applied Fracture Mechanics. 2010;54(1):1-10.

41.       Liu JX, Liang NG.   Algorithm for simulating fracture processes in concrete by lattice modeling. Theoretical   and Applied Fracture Mechanics. 2009;52(1):26-39.

42.       Liu JX, Zhao ZY, Deng SC,   Liang NG. Numerical investigation of crack growth in concrete subjected   to compression by the generalized beam lattice model. Computational   Mechanics. 2008;43(2):277-295.

43.       Liu JX, Zhao ZY, Deng SC,   Liang NG. Modified generalized beam lattice model associated with   fracture of reinforced fiber/particle composites. Theoretical and   Applied Fracture Mechanics. 2008;50(2):132-141.

44.       Liu J, Zhao Z, Deng S,   Liang N. A simple method to simulate shrinkage-induced cracking in   cement-based composites by lattice-type modeling. Computational   Mechanics. 2008;43(4):477-492.

45.       Liu JX, Deng SC, Liang NG.   Comparison of the quasi-static method and the dynamic method for simulating   fracture processes in concrete. Computational Mechanics. 2007;41(5):647-660.

46.       Liu J, Deng S, Zhang J,   Liang N. Lattice type of fracture model for concrete. Theoretical   and Applied Fracture Mechanics. 2007;48(3):269-284.

47.       Deng SC, Liu JX, Liang NG,   Zhang J. Validation of component assembly model and extension to   plasticity. Theoretical and Applied Fracture Mechanics. 2007;47(3):244-259.

48.       Deng S, Liu J, Liang N.   Wedge and twist disclinations in second strain gradient elasticity. International   Journal of Solids and Structures. 2007;44(11-12):3646-3665.

 

专著

  1. J.X. Liu, Z.Y. Zhao, N.G. Liang. Chapter 2:        Numerical and theoretical analyses of tensile failure of shrunk        cement-based composites. In: Computational Mechanics Research Trends        (Ed., H.P. Berger). Nova publisher, 2010.

获奖情况

江苏省特聘教授,江苏省“创新创业”人才

发明专利

 

重要学术  活动

201747~10日,刘金兴赴香港参加第13届苏港力学论坛。

2017813~16日,刘金兴等赴北京参加中国力学大会。

201794~7日,刘金兴赴葡萄牙参加第二届结构完整性国际会议 the 2nd International Conference on   Structural Integrity.

2018511~13日,刘金兴等赴江苏无锡参加“工程结构与材料中的关键力学问题研讨会”暨“华东地区固体力学沙龙”。

201863~9日,刘金兴赴美国芝加哥参加第十八届美国理论与应用力学年会 18th U.S. National Congress   for Theoretical and Applied Mechanics)。

2018916~22日,刘金兴赴美国海恩尼斯参加12届结构材料疲劳损伤国际会议 the Twelfth International Conference on Fatigue Damage of   Structural Materials FDSM XII

2018113~5日,刘金兴赴上海参加ASCE EMI 国际会议(Engineering Mechanics   Institute International Conference 2018)。

20181123~25日,刘金兴等赴哈尔滨参加全国固体力学大会。

2019324~29日,刘金兴赴日本东京参加 2019年计算和实验工程与科学国际会议(The   International Conference on Computational & Experimental Engineering and   Sciences 2019)。

2019824~27日,刘金兴等赴杭州参加全国力学大会。同期,刘金兴还参加了AWTAM会议。

2019412~14日,刘金兴等赴江苏无锡参加低维材料力学会议。

人生格言

工作容易被安逸的生活所累。

联系方式

taibaijinxing@ujs.edu.cn

 

 

 

 

 

 
学院概况
学院简介
学院领导
组织机构
规章制度
院史沿革
校友风采
师资队伍
研究生导师
学院教师
兼职教授
人才招聘
人才培养
本科教育
研究生教育
留学生教育
教学成果
精品课程
 
学科科研
学科建设
科研平台
科研项目
科研成果
社会服务
 
实验平台
实验室
管理制度
先进仪器
 
党群工作
组织机构
党建动态
分工会工作
关工委
实践专栏
光荣榜
学生工作
工作团队
规章制度
科技创新
就业创业
团学风采
致远工作坊
下载中心
各类表格
教学文件
学工文件
 
地址: 江苏省镇江市学府路301号 邮编: 212013 电话:0511-80611110 邮箱:tmlxxy@ujs.edu.cn